Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 151(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38415752

RESUMEN

Signal amplification based on the mechanism of hybridization chain reaction (HCR) provides a unified framework for multiplex, quantitative, high-resolution imaging of RNA and protein targets in highly autofluorescent samples. With conventional bandpass imaging, multiplexing is typically limited to four or five targets owing to the difficulty in separating signals generated by fluorophores with overlapping spectra. Spectral imaging has offered the conceptual promise of higher levels of multiplexing, but it has been challenging to realize this potential in highly autofluorescent samples, including whole-mount vertebrate embryos. Here, we demonstrate robust HCR spectral imaging with linear unmixing, enabling simultaneous imaging of ten RNA and/or protein targets in whole-mount zebrafish embryos and mouse brain sections. Further, we demonstrate that the amplified and unmixed signal in each of the ten channels is quantitative, enabling accurate and precise relative quantitation of RNA and/or protein targets with subcellular resolution, and RNA absolute quantitation with single-molecule resolution, in the anatomical context of highly autofluorescent samples.


Asunto(s)
Diagnóstico por Imagen , Pez Cebra , Animales , Ratones , Hibridación de Ácido Nucleico , Embrión de Mamíferos , ARN
2.
ACS Chem Biol ; 19(2): 280-288, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38232374

RESUMEN

Signal amplification based on the mechanism of hybridization chain reaction (HCR) facilitates spatial exploration of gene regulatory networks by enabling multiplex, quantitative, high-resolution imaging of RNA and protein targets. Here, we extend these capabilities to the imaging of protein:protein complexes, using proximity-dependent cooperative probes to conditionally generate a single amplified signal if and only if two target proteins are colocalized within the sample. HCR probes and amplifiers combine to provide automatic background suppression throughout the protocol, ensuring that even if reagents bind nonspecifically in the sample, they will not generate amplified background. We demonstrate protein:protein imaging with a high signal-to-background ratio in human cells, mouse proT cells, and highly autofluorescent formalin-fixed paraffin-embedded (FFPE) human breast tissue sections. Further, we demonstrate multiplex imaging of three different protein:protein complexes simultaneously and validate that HCR enables accurate and precise relative quantitation of protein:protein complexes with subcellular resolution in an anatomical context. Moreover, we establish a unified framework for simultaneous multiplex, quantitative, high-resolution imaging of RNA, protein, and protein:protein targets, with one-step, isothermal, enzyme-free HCR signal amplification performed for all target classes simultaneously.


Asunto(s)
Diagnóstico por Imagen , ARN , Humanos , Animales , Ratones , Hibridación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico
3.
bioRxiv ; 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37693627

RESUMEN

Signal amplification based on the mechanism of hybridization chain reaction (HCR) provides a unified framework for multiplex, quantitative, high-resolution imaging of RNA and protein targets in highly autofluorescent samples. With conventional bandpass imaging, multiplexing is typically limited to four or five targets due to the difficulty in separating signals generated by fluorophores with overlapping spectra. Spectral imaging has offered the conceptual promise of higher levels of multiplexing, but it has been challenging to realize this potential in highly autofluorescent samples including whole-mount vertebrate embryos. Here, we demonstrate robust HCR spectral imaging with linear unmixing, enabling simultaneous imaging of 10 RNA and/or protein targets in whole-mount zebrafish embryos and mouse brain sections. Further, we demonstrate that the amplified and unmixed signal in each of 10 channels is quantitative, enabling accurate and precise relative quantitation of RNA and/or protein targets with subcellular resolution, and RNA absolute quantitation with single-molecule resolution, in the anatomical context of highly autofluorescent samples. SUMMARY: Spectral imaging with signal amplification based on the mechanism of hybridization chain reaction enables robust 10-plex, quantitative, high-resolution imaging of RNA and protein targets in whole-mount vertebrate embryos and brain sections.

4.
ACS Infect Dis ; 9(3): 450-458, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36735927

RESUMEN

The lateral flow assay format enables rapid, instrument-free, at-home testing for SARS-CoV-2. Due to the absence of signal amplification, this simplicity comes at a cost in sensitivity. Here, we enhance sensitivity by developing an amplified lateral flow assay that incorporates isothermal, enzyme-free signal amplification based on the mechanism of hybridization chain reaction (HCR). The simplicity of the user experience is maintained using a disposable 3-channel lateral flow device to automatically deliver reagents to the test region in three successive stages without user interaction. To perform a test, the user loads the sample, closes the device, and reads the result by eye after 60 min. Detecting gamma-irradiated SARS-CoV-2 virions in a mixture of saliva and extraction buffer, the current amplified HCR lateral flow assay achieves a limit of detection of 200 copies/µL using available antibodies to target the SARS-CoV-2 nucleocapsid protein. By comparison, five commercial unamplified lateral flow assays that use proprietary antibodies exhibit limits of detection of 500 copies/µL, 1000 copies/µL, 2000 copies/µL, 2000 copies/µL, and 20,000 copies/µL. By swapping out antibody probes to target different pathogens, amplified HCR lateral flow assays offer a platform for simple, rapid, and sensitive at-home testing for infectious diseases. As an alternative to viral protein detection, we further introduce an HCR lateral flow assay for viral RNA detection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Prueba de COVID-19 , Límite de Detección , ARN Viral/genética
5.
Life Sci Space Res (Amst) ; 35: 105-112, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36336356

RESUMEN

Future lunar missions and beyond will require new and innovative approaches to radiation countermeasures. The Translational Research Institute for Space Health (TRISH) is focused on identifying and supporting unique approaches to reduce risks to human health and performance on future missions beyond low Earth orbit. This paper will describe three funded and complementary avenues for reducing the risk to humans from radiation exposure experienced in deep space. The first focus is on identifying new therapeutic targets to reduce the damaging effects of radiation by focusing on high throughput genetic screens in accessible, sometimes called lower, organism models. The second focus is to design innovative approaches for countermeasure development with special attention to nucleotide-based methodologies that may constitute a more agile way to design therapeutics. The final focus is to develop new and innovative ways to test radiation countermeasures in a human model system. While animal studies continue to be beneficial in the study of space radiation, they can have imperfect translation to humans. The use of three-dimensional (3D) complex in vitro models is a promising approach to aid the development of new countermeasures and personalized assessments of radiation risks. These three distinct and unique approaches complement traditional space radiation efforts and should provide future space explorers with more options to safeguard their short and long-term health.


Asunto(s)
Radiación Cósmica , Exposición a la Radiación , Protección Radiológica , Vuelo Espacial , Animales , Humanos , Radiación Cósmica/efectos adversos , Protección Radiológica/métodos , Luna
6.
ACS Synth Biol ; 10(5): 964-971, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33930275

RESUMEN

The activity of a conditional guide RNA (cgRNA) is dependent on the presence or absence of an RNA trigger, enabling cell-selective regulation of CRISPR/Cas function. cgRNAs are programmable at two levels, with the target-binding sequence controlling the target of Cas activity (edit, silence, or induce a gene of choice) and the trigger-binding sequence controlling the scope of Cas activity (subset of cells expressing the trigger RNA). Allosteric cgRNA mechanisms enable independent design of the target and trigger sequences, providing the flexibility to select the regulatory target and scope independently. Building on prior advances in dynamic RNA nanotechnology that demonstrated the cgRNA concept, here we set the goal of engineering high-performance allosteric cgRNA mechanisms for the mammalian setting, pursuing both ON → OFF logic (conditional inactivation by an RNA trigger) and OFF → ON logic (conditional activation by an RNA trigger). For each mechanism, libraries of orthogonal cgRNA/trigger pairs were designed using NUPACK. In HEK 293T cells expressing cgRNAs, triggers, and inducing dCas9: (1) a library of four ON → OFF "terminator switch" cgRNAs exhibit a median fold-change of ≈50×, a median fractional dynamic range of ≈20%, and a median crosstalk modulus of ≈9%; (2) a library of three OFF → ON "split-terminator switch" cgRNAs exhibit a median fold-change of ≈150×, a median fractional dynamic range of ≈50%, and a median crosstalk modulus of ≈4%. Further, we demonstrate that xrRNA elements that protect viral RNAs from degradation by exoribonucleases can dramatically enhance the performance of RNA synthetic biology. The high-performance allosteric cgRNAs demonstrated here for ON → OFF and OFF → ON logic in mammalian cells provide a foundation for pursuing applications of programmable cell-selective regulation.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , Regulación Alostérica , Sitios de Unión , Clonación Molecular/métodos , Flavivirus/genética , Flavivirus/metabolismo , Células HEK293 , Humanos , Nanotecnología/métodos , Plásmidos/genética , Estabilidad del ARN/genética , ARN Guía de Kinetoplastida/metabolismo , Biología Sintética/métodos
7.
Development ; 148(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35020875

RESUMEN

RNA in situ hybridization based on the mechanism of the hybridization chain reaction (HCR) enables multiplexed, quantitative, high-resolution RNA imaging in highly autofluorescent samples, including whole-mount vertebrate embryos, thick brain slices and formalin-fixed paraffin-embedded tissue sections. Here, we extend the benefits of one-step, multiplexed, quantitative, isothermal, enzyme-free HCR signal amplification to immunohistochemistry, enabling accurate and precise protein relative quantitation with subcellular resolution in an anatomical context. Moreover, we provide a unified framework for simultaneous quantitative protein and RNA imaging with one-step HCR signal amplification performed for all target proteins and RNAs simultaneously.


Asunto(s)
Diagnóstico por Imagen , Inmunohistoquímica , Hibridación de Ácido Nucleico , ARN Mensajero/genética , Animales , Embrión de Mamíferos , Embrión no Mamífero , Humanos , Hibridación in Situ , Hibridación Fluorescente in Situ , ARN Mensajero/aislamiento & purificación , Pez Cebra
8.
ACS Synth Biol ; 9(10): 2665-2678, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32910644

RESUMEN

Dynamic programming algorithms within the NUPACK software suite enable analysis of nucleic acid sequences over complex and test tube ensembles containing arbitrary numbers of interacting strand species, serving the needs of researchers in molecular programming, nucleic acid nanotechnology, synthetic biology, and across the life sciences. Here, to enhance the underlying physical model, ensure scalability for large calculations, and achieve dramatic speedups when calculating diverse physical quantities over complex and test tube ensembles, we introduce a unified dynamic programming framework that combines three ingredients: (1) recursions that specify the dependencies between subproblems and incorporate the details of the structural ensemble and the free energy model, (2) evaluation algebras that define the mathematical form of each subproblem, (3) operation orders that specify the computational trajectory through the dependency graph of subproblems. The physical model is enhanced using new recursions that operate over the complex ensemble including coaxial and dangle stacking subensembles. The recursions are coded generically and then compiled with a quantity-specific evaluation algebra and operation order to generate an executable for each physical quantity: partition function, equilibrium base-pairing probabilities, MFE energy and proxy structure, suboptimal proxy structures, and Boltzmann sampled structures. For large complexes (e.g., 30 000 nt), scalability is achieved for partition function calculations using an overflow-safe evaluation algebra, and for equilibrium base-pairing probabilities using a backtrack-free operation order. A new blockwise operation order that treats subcomplex blocks for the complex species in a test tube ensemble enables dramatic speedups (e.g., 20-120× ) using vectorization and caching. With these performance enhancements, equilibrium analysis of substantial test tube ensembles can be performed in ≤ 1 min on a single computational core (e.g., partition function and equilibrium concentration for all complex species of up to six strands formed from two strand species of 300 nt each, or for all complex species of up to two strands formed from 80 strand species of 100 nt each). A new sampling algorithm simultaneously samples multiple structures from the complex ensemble to yield speedups of an order of magnitude or more as the number of structures increases above ≈103. These advances are available within the NUPACK 4.0 code base (www.nupack.org) which can be flexibly scripted using the all-new NUPACK Python module.


Asunto(s)
Algoritmos , ADN/química , Modelos Moleculares , ARN/química , Programas Informáticos , Emparejamiento Base , Secuencia de Bases , Biología Computacional/métodos , Nanotecnología/métodos , Conformación de Ácido Nucleico , Biología Sintética/métodos , Temperatura
9.
Methods Mol Biol ; 2148: 127-141, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32394379

RESUMEN

In situ hybridization based on the mechanism of hybridization chain reaction (HCR) enables high-throughput expression profiling of mammalian or bacterial cells via flow cytometry. Third-generation in situ HCR (v3.0) provides automatic background suppression throughout the protocol, dramatically enhancing performance and ease of use. In situ HCR v3.0 supports analog mRNA relative quantitation via qHCR flow cytometry. Here, we provide protocols for multiplexed qHCR flow cytometry for mammalian or bacterial cells in suspension.


Asunto(s)
Citometría de Flujo/métodos , Hibridación Fluorescente in Situ/métodos , Hibridación in Situ/métodos , ARN Mensajero/aislamiento & purificación , Animales , Bacterias/genética , Mamíferos/genética , ARN Mensajero/genética , Suspensiones
10.
Methods Mol Biol ; 2148: 159-178, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32394381

RESUMEN

In situ hybridization based on the mechanism of hybridization chain reaction (HCR) enables multiplexed quantitative mRNA imaging in the anatomical context of whole-mount vertebrate embryos. Third-generation in situ HCR (v3.0) provides automatic background suppression throughout the protocol, dramatically enhancing performance and ease of use. In situ HCR v3.0 supports two quantitative imaging modes: (1) qHCR imaging for analog mRNA relative quantitation with subcellular resolution in an anatomical context and (2) dHCR imaging for digital mRNA absolute quantitation with single-molecule resolution in an anatomical context. Here, we provide protocols for qHCR and dHCR imaging in whole-mount zebrafish, chicken, and mouse embryos.


Asunto(s)
Diagnóstico por Imagen/métodos , Hibridación Fluorescente in Situ/métodos , Hibridación in Situ/métodos , ARN Mensajero/genética , Animales , Pollos , Embrión de Mamíferos , Embrión no Mamífero , Ratones , Pez Cebra/genética
11.
Methods Mol Biol ; 2148: 143-156, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32394380

RESUMEN

In situ hybridization based on the mechanism of hybridization chain reaction (HCR) enables multiplexed quantitative mRNA imaging in diverse sample types. Third-generation in situ HCR (v3.0) provides automatic background suppression throughout the protocol, dramatically enhancing performance and ease of use. In situ HCR v3.0 supports two quantitative imaging modes: (1) qHCR imaging for analog mRNA relative quantitation with subcellular resolution and (2) dHCR imaging for digital mRNA absolute quantitation with single-molecule resolution. Here, we provide protocols for qHCR and dHCR imaging in mammalian cells on a slide.


Asunto(s)
Diagnóstico por Imagen/métodos , Pruebas Diagnósticas de Rutina/métodos , Hibridación Fluorescente in Situ/métodos , ARN Mensajero/aislamiento & purificación , Animales , Mamíferos/genética , ARN Mensajero/genética , Pez Cebra/genética
12.
ACS Cent Sci ; 5(7): 1241-1249, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31403072

RESUMEN

A guide RNA (gRNA) directs the function of a CRISPR protein effector to a target gene of choice, providing a versatile programmable platform for engineering diverse modes of synthetic regulation (edit, silence, induce, bind). However, the fact that gRNAs are constitutively active places limitations on the ability to confine gRNA activity to a desired location and time. To achieve programmable control over the scope of gRNA activity, here we apply principles from dynamic RNA nanotechnology to engineer conditional guide RNAs (cgRNAs) whose activity is dependent on the presence or absence of an RNA trigger. These cgRNAs are programmable at two levels, with the trigger-binding sequence controlling the scope of the effector activity and the target-binding sequence determining the subject of the effector activity. We demonstrate molecular mechanisms for both constitutively active cgRNAs that are conditionally inactivated by an RNA trigger (ON → OFF logic) and constitutively inactive cgRNAs that are conditionally activated by an RNA trigger (OFF → ON logic). For each mechanism, automated sequence design is performed using the reaction pathway designer within NUPACK to design an orthogonal library of three cgRNAs that respond to different RNA triggers. In E. coli expressing cgRNAs, triggers, and silencing dCas9 as the protein effector, we observe a median conditional response of ≈4-fold for an ON → OFF "terminator switch" mechanism, ≈15-fold for an ON → OFF "splinted switch" mechanism, and ≈3-fold for an OFF → ON "toehold switch" mechanism; the median crosstalk within each cgRNA/trigger library is <2%, ≈2%, and ≈20% for the three mechanisms. To test the portability of cgRNA mechanisms prototyped in bacteria to mammalian cells, as well as to test generalizability to different effector functions, we implemented the terminator switch in HEK 293T cells expressing inducing dCas9 as the protein effector, observing a median ON → OFF conditional response of ≈4-fold with median crosstalk of ≈30% for three orthogonal cgRNA/trigger pairs. By providing programmable control over both the scope and target of protein effector function, cgRNA regulators offer a promising platform for synthetic biology.

13.
ACS Synth Biol ; 7(12): 2796-2802, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30525469

RESUMEN

Dynamic RNA nanotechnology with small conditional RNAs (scRNAs) offers a promising conceptual approach to introducing synthetic regulatory links into endogenous biological circuits. Here, we use human cell lysate containing functional Dicer and RNases as a testbed for engineering scRNAs for conditional RNA interference (RNAi). scRNAs perform signal transduction via conditional shape change: detection of a subsequence of mRNA input X triggers formation of a Dicer substrate that is processed to yield small interfering RNA (siRNA) output anti-Y targeting independent mRNA Y for destruction. Automated sequence design is performed using the reaction pathway designer within NUPACK to encode this conditional hybridization cascade into the scRNA sequence subject to the sequence constraints imposed by X and Y. Because it is difficult for secondary structure models to predict which subsequences of mRNA input X will be accessible for detection, here we develop the RNAhyb method to experimentally determine accessible windows within the mRNA that are provided to the designer as sequence constraints. We demonstrate the programmability of scRNA regulators by engineering scRNAs for transducing in both directions between two full-length mRNAs X and Y, corresponding to either the forward molecular logic "if X then not Y" (X [Formula: see text] Y) or the reverse molecular logic "if Y then not X" (Y [Formula: see text] X). In human cell lysate, we observe a strong OFF/ON conditional response with low crosstalk, corresponding to a ≈20-fold increase in production of the siRNA output in response to the cognate versus noncognate full-length mRNA input. 2'OMe-RNA chemical modifications protect signal transduction reactants and intermediates against RNase degradation while enabling Dicer processing of signal transduction products. Because diverse biological pathways interact with RNA, scRNAs that transduce between detection of endogenous RNA inputs and production of biologically active RNA outputs hold great promise as a synthetic regulatory paradigm.


Asunto(s)
Nanotecnología , Transducción de Señal , Biología Sintética/métodos , ARN Helicasas DEAD-box/inmunología , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Humanos , Hibridación de Ácido Nucleico , Interferencia de ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/inmunología , Ribonucleasa III/metabolismo
14.
Development ; 145(12)2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29945988

RESUMEN

In situ hybridization based on the mechanism of the hybridization chain reaction (HCR) has addressed multi-decade challenges that impeded imaging of mRNA expression in diverse organisms, offering a unique combination of multiplexing, quantitation, sensitivity, resolution and versatility. Here, with third-generation in situ HCR, we augment these capabilities using probes and amplifiers that combine to provide automatic background suppression throughout the protocol, ensuring that reagents will not generate amplified background even if they bind non-specifically within the sample. Automatic background suppression dramatically enhances performance and robustness, combining the benefits of a higher signal-to-background ratio with the convenience of using unoptimized probe sets for new targets and organisms. In situ HCR v3.0 enables three multiplexed quantitative analysis modes: (1) qHCR imaging - analog mRNA relative quantitation with subcellular resolution in the anatomical context of whole-mount vertebrate embryos; (2) qHCR flow cytometry - analog mRNA relative quantitation for high-throughput expression profiling of mammalian and bacterial cells; and (3) dHCR imaging - digital mRNA absolute quantitation via single-molecule imaging in thick autofluorescent samples.


Asunto(s)
Hibridación in Situ/métodos , Animales , Embrión de Pollo , Escherichia coli/genética , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Imagenología Tridimensional , Sondas ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Fracciones Subcelulares/metabolismo
15.
Development ; 145(1)2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29311262

RESUMEN

For decades, in situ hybridization methods have been essential tools for studies of vertebrate development and disease, as they enable qualitative analyses of mRNA expression in an anatomical context. Quantitative mRNA analyses typically sacrifice the anatomy, relying on embryo microdissection, dissociation, cell sorting and/or homogenization. Here, we eliminate the trade-off between quantitation and anatomical context, using quantitative in situ hybridization chain reaction (qHCR) to perform accurate and precise relative quantitation of mRNA expression with subcellular resolution within whole-mount vertebrate embryos. Gene expression can be queried in two directions: read-out from anatomical space to expression space reveals co-expression relationships in selected regions of the specimen; conversely, read-in from multidimensional expression space to anatomical space reveals those anatomical locations in which selected gene co-expression relationships occur. As we demonstrate by examining gene circuits underlying somitogenesis, quantitative read-out and read-in analyses provide the strengths of flow cytometry expression analyses, but by preserving subcellular anatomical context, they enable bi-directional queries that open a new era for in situ hybridization.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Mensajero/biosíntesis , Pez Cebra/embriología , Animales , Embrión no Mamífero
16.
J Am Chem Soc ; 139(8): 3134-3144, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28191938

RESUMEN

We describe a framework for designing the sequences of multiple nucleic acid strands intended to hybridize in solution via a prescribed reaction pathway. Sequence design is formulated as a multistate optimization problem using a set of target test tubes to represent reactant, intermediate, and product states of the system, as well as to model crosstalk between components. Each target test tube contains a set of desired "on-target" complexes, each with a target secondary structure and target concentration, and a set of undesired "off-target" complexes, each with vanishing target concentration. Optimization of the equilibrium ensemble properties of the target test tubes implements both a positive design paradigm, explicitly designing for on-pathway elementary steps, and a negative design paradigm, explicitly designing against off-pathway crosstalk. Sequence design is performed subject to diverse user-specified sequence constraints including composition constraints, complementarity constraints, pattern prevention constraints, and biological constraints. Constrained multistate sequence design facilitates nucleic acid reaction pathway engineering for diverse applications in molecular programming and synthetic biology. Design jobs can be run online via the NUPACK web application.


Asunto(s)
Ácidos Nucleicos/síntesis química , Algoritmos , Conformación de Ácido Nucleico , Ácidos Nucleicos/química
17.
Development ; 143(19): 3632-3637, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27702788

RESUMEN

In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs. To assist biologists working across a broad spectrum of organisms, we demonstrate multiplexed in situ HCR in diverse imaging settings: bacteria, whole-mount nematode larvae, whole-mount fruit fly embryos, whole-mount sea urchin embryos, whole-mount zebrafish larvae, whole-mount chicken embryos, whole-mount mouse embryos and formalin-fixed paraffin-embedded human tissue sections. In addition to straightforward multiplexing, in situ HCR enables deep sample penetration, high contrast and subcellular resolution, providing an incisive tool for the study of interlaced and overlapping expression patterns, with implications for research communities across the biological sciences.


Asunto(s)
Hibridación in Situ/métodos , ARN Mensajero/metabolismo , Animales , Drosophila , Embrión no Mamífero/metabolismo , Humanos , Pez Cebra
18.
Nucleic Acids Res ; 44(15): e129, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27270083

RESUMEN

Northern blots enable detection of a target RNA of interest in a biological sample using standard benchtop equipment. miRNAs are the most challenging targets as they must be detected with a single short nucleic acid probe. With existing approaches, it is cumbersome to perform multiplexed blots in which several RNAs are detected simultaneously, impeding the study of interacting regulatory elements. Here, we address this shortcoming by demonstrating multiplexed northern blotting based on the mechanism of hybridization chain reaction (HCR). With this approach, nucleic acid probes complementary to RNA targets trigger chain reactions in which fluorophore-labeled DNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability of HCR allows multiple amplifiers to operate simultaneously and independently within a blot, enabling straightforward multiplexing. We demonstrate simultaneous detection of three endogenous miRNAs in total RNA extracted from 293T and HeLa cells. For a given target, HCR signal scales linearly with target abundance, enabling relative and absolute quantitation. Using non-radioactive HCR, sensitive and selective miRNA detection is achieved using 2'OMe-RNA probes. The HCR northern blot protocol takes ∼1.5 days independent of the number of target RNAs.


Asunto(s)
Northern Blotting/métodos , MicroARNs/análisis , MicroARNs/genética , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/química , Células HEK293 , Células HeLa , Humanos , Sondas ARN/análisis , Sondas ARN/química , Factores de Tiempo
19.
Development ; 143(15): 2862-7, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27342713

RESUMEN

Accurate and robust detection of mRNA molecules in thick tissue samples can reveal gene expression patterns in single cells within their native environment. Preserving spatial relationships while accessing the transcriptome of selected cells is a crucial feature for advancing many biological areas - from developmental biology to neuroscience. However, because of the high autofluorescence background of many tissue samples, it is difficult to detect single-molecule fluorescence in situ hybridization (smFISH) signals robustly in opaque thick samples. Here, we draw on principles from the emerging discipline of dynamic nucleic acid nanotechnology to develop a robust method for multi-color, multi-RNA imaging in deep tissues using single-molecule hybridization chain reaction (smHCR). Using this approach, single transcripts can be imaged using epifluorescence, confocal or selective plane illumination microscopy (SPIM) depending on the imaging depth required. We show that smHCR has high sensitivity in detecting mRNAs in cell culture and whole-mount zebrafish embryos, and that combined with SPIM and PACT (passive CLARITY technique) tissue hydrogel embedding and clearing, smHCR can detect single mRNAs deep within thick (0.5 mm) brain slices. By simultaneously achieving ∼20-fold signal amplification and diffraction-limited spatial resolution, smHCR offers a robust and versatile approach for detecting single mRNAs in situ, including in thick tissues where high background undermines the performance of unamplified smFISH.


Asunto(s)
Hidrogel de Polietilenoglicol-Dimetacrilato/química , ARN/genética , Animales , Embrión no Mamífero/metabolismo , Hibridación Fluorescente in Situ , Pez Cebra
20.
Cold Spring Harb Protoc ; 2015(3): 259-68, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25734068

RESUMEN

Multiplexed fluorescent hybridization chain reaction (HCR) and advanced imaging techniques can be used to evaluate combinatorial gene expression patterns in whole mouse embryos with unprecedented spatial resolution. Using HCR, DNA probes complementary to mRNA targets trigger chain reactions in which metastable fluorophore-labeled DNA HCR hairpins self-assemble into tethered fluorescent amplification polymers. Each target mRNA is detected by a probe set containing one or more DNA probes, with each probe carrying two HCR initiators. For multiplexed experiments, probe sets for different target mRNAs carry orthogonal initiators that trigger orthogonal DNA HCR amplification cascades labeled by spectrally distinct fluorophores. As a result, in situ amplification is performed for all targets simultaneously, and the duration of the experiment is independent of the number of target mRNAs. We have used multiplexed fluorescent in situ HCR and advanced imaging technologies to address questions of cell heterogeneity and tissue complexity in craniofacial patterning and anterior neural development. In the sample protocol presented here, we detect three different mRNA targets: Tg(egfp), encoding the enhanced green fluorescent protein (GFP) transgene (typically used as a control); Twist1, encoding a transcription factor involved in cell lineage determination and differentiation; and Pax2, encoding a transcription factor expressed in the mid-hindbrain region of the mouse embryo.


Asunto(s)
Embrión de Mamíferos , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Técnicas de Amplificación de Ácido Nucleico/métodos , Hibridación de Ácido Nucleico/métodos , ARN Mensajero/análisis , Animales , Encéfalo/embriología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...